
Intergranular squirt ¯ow in sand: grains with viscous
cement

Klaus C. Leurer, Jack Dvorkin*

Department of Geophysics, Stanford University, Stanford, CA 94305-2215, USA

Received 23 January 1998; in revised form 1 October 1998

Abstract

We o�er an exact solution to the problem of deformation of two elastic spherical particles with viscous cement at

their contact. This model is intended to mimic a granular geomaterial whose grains are covered with viscous ¯uid of
geologic or biogenic nature (e.g., marine sediment, heavy-oil sand, asphalt concrete). The solution for the normal
sti�ness of a two-grain combination is reduced to an ordinary integro-di�erential equation that has to be solved

numerically. We ®nd two approximations for the rigorous numerical solution. The simplest one, based on the
Maxwell viscoelastic model, cannot accurately reproduce the relaxational behavior of the system. The second one is
based on the Cole±Cole model that allows one to introduce a spectrum of relaxation times. This expression is very
accurate and can be used instead of the numerical solution. The complex e�ective elastic moduli of the aggregate

are calculated from statistical averaging for a dense random pack of identical spheres. The theoretical results match
well experimental data obtained on a glass bead pack with viscous epoxy cement. # 1999 Elsevier Science Ltd. All
rights reserved.

1. Introduction and problem formulation

The elastic properties of a granular aggregate such as oil sand or marine sediment strongly depend on
the sti�ness of the grain-to-grain contacts. This sti�ness can be a�ected by the presence of high-viscosity
¯uid (e.g., heavy oil, clay suspension, or a biogenic material) that envelops the grains. This ¯uid may act
as contact cement and reinforce the intergranular contacts (Fig. 1).

The e�ective elastic properties of a granular aggregate with viscous cement are frequency-dependent.
At zero frequency, pressure in viscous cement is equal to that in the surrounding pore space. Therefore,
viscous cement will not contribute to the sti�ness of the grain-to-grain contact. At in®nite frequency,
viscous cement becomes unrelaxed and deforms as an elastic body. Now it may strongly reinforce the
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contacts. At intermediate frequencies local (squirt) ¯ow of viscous cement develops between the grains.
Such viscous ¯ow is responsible for velocity-frequency dispersion and attenuation (e.g., Mavko and
Jizba, 1991; Dvorkin et al., 1995). Our goal is to quantitatively describe the squirt ¯ow of viscous
cement between grains and quantify its e�ect on the sti�ness of the sediment frame and, therefore,
acoustic velocity and attenuation in the sediment.

In order to solve the problem, we assume that the grains are spherical and elastic, and cement is a
Newtonian compressible viscous ¯uid. We assume that the con®ning force acting on the grains is zero,
i.e., the direct grain-to-grain contact is a point and the grains are in close-pack suspension. When the
system is deformed by an acoustic wave, the direct grain-to-grain contact remains a point, and the
external wave-induced force is counteracted by hydrodynamic pressure developed in viscous cement.

The main part of the solution is ®nding the normal sti�ness of a two-grain combination. This normal
sti�ness is de®ned as the ratio of the applied (to the grains) normal force to the resulting increment of
the displacement of the sphere center. Because the grains are not precompacted, we assume that the
shear sti�ness of two grains is zero.

Once the expression for the normal contact sti�ness is obtained, it can be used in a numerical discrete
element code. For the special case of a random close pack of identical spherical grains the following
analytical expressions can be used to calculate the e�ective bulk (KEff) and shear (GEff) moduli of the
aggregate (e.g., Dvorkin et al., 1994):

KEff � n�1ÿ f�
12pR

Sn, GEff � 3

5
KEff ; �1�

where Sn is the normal sti�ness between two grains; n 1 9 is the coordination number (the average
number of contacts per gram); f1 0:36 is the aggregate's porosity.

2. Governing equation

We describe the dynamics of the viscous cement by examining its ¯ow induced by the oscillations of
the grain surfaces (Dvorkin et al., 1990). Speci®cally, we consider oscillations at a ®xed angular
frequency o . Then the half-thickness b of the cement layer in the vicinity of the point grain-to-grain

Fig. 1. Left: two spherical grains with a point direct contact enveloped by high-viscosity ¯uid. Right: the grain contact region with

viscous contact cement.
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contact is a function of the radial coordinate r and time t:

b�r, t� � r2=�2R� � b0�r� eio t, �2�
where R is the grain radius, and b0 � b is the amplitude of the grain surface oscillations.

For an acoustic compressible ¯uid with the speed of sound c0 the pressure increment dP is
proportional to the density increment dr as

dP � c20 dr: �3�
The mass conservation equation in the contact region (Fig. 1) is

@r
@ t
� @�ru�

@r
� ru

r
� @�rw�

@z
� 0, �4�

where u is the velocity component along the r-coordinate, and w is the velocity component along the z-
coordinate.

Let us integrate eqn (4) in the z-direction from 0 to b and take into account that

w � 0, z � 0; w � @b=@ t, z � b: �5�
These are boundary conditions that state that the z-component of ¯uid velocity is zero (due to
symmetry) at the plane of grain-to-grain contact (z = 0); and this component equals the velocity of the
sphere surface at that surface (z = b ). Then

@ �br�
@ t
�
�b
0

�
@�ru�
@r
� ru

r

�
dz � 0: �6�

The approximate Navier±Stokes equation for the radial ¯ow in the contact gap is

@u

@t
� ÿ1

r
@P

@r
� m

r
@2u

@z2
, �7�

where m is the dynamic viscosity. This equation is an example of the lubrication theory (e.g., Schlichting,
1951) where the z-component of the ¯uid velocity is neglected. It is also assumed that viscous cement is
acoustic ¯uid and thus variations of density are small as compared to its reference value. A solution of
eqn (7) in the frequency domain is

u�r, z� � ÿ 1

ior
@P

@r

"
1ÿ cosh

ÿ
z
�������������
ior=m
p �

cosh
ÿ
b
�������������
ior=m
p �#: �8�

Then, and using eqns (2) and (3), we have

@ �ru�
@r

1r
@u

@r
,
@ �rb�
@t

1r
@b

@ t
� b

c20

@P

@ t
� iob0 eio t � io eio t b

c20
P: �9�

Finally, we substitute eqn (8) into eqn (6) and use eqns (2) and (9) to obtain an ordinary di�erential
equation for pressure P in the frequency domain:�

@2P

@r2
� @P

r@r

��
1ÿ tanh l

l

�
� 2

@P

r@r
tanh2l� P

o2

c20
� ÿo2rb0

2R

r2
, l � r2

2R

���������
ior
m

s
: �10�
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In order to ®nd b0�r� we examine the elastic deformation of the grain surface. We use the following
compatibility equation among b0�r�, the elastic displacement V(r ) of the grain surface in the z-direction
(the z-component of the displacement of the surface of the sphere relative to its center), and the rigid
displacement d of the sphere center (Dvorkin et al., 1994):

b0�r� � V�r� ÿ d: �11�
Then we use an integral equation that relates V(r ) to pressure P(r ) in the viscous ¯ow that is exerted
upon the grain surface in the contact region (Timoshenko and Goodier, 1970):

V�r� � 1ÿ n
pG

�p
0

dj
�r cos j�

������������������
a2ÿr2 sin2 j
p

0

P

� ��������������������������������������
r2 � s2 ÿ 2rs cos j

p �
ds, �12�

where n and G are the grain Poisson's ratio and shear modulus, respectively; and a is the radius of the
contact region (Fig. 1). This radius is related to the thickness h of the layer of the viscous cement
around the grain as

a �
���������
2hR
p

: �13�
The integration domain in eqn (12) is shown in Fig. 2.

Now by combining eqns (10)±(12), we arrive at the governing equation for pressure P:�
@2P

@r2
� @P

r @r

��
1ÿ tanh l

l

�
� 2

@P

r @r
tanh2l� P
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c20
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�p
0
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�������������������
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p
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P

� ��������������������������������������
r2 � s2 ÿ 2rs cos j

p �
dsÿ d

#
:

�14�

The boundary conditions for eqns (10) and (14) are (a) zero pressure ¯uctuation (from the ambient
hydrostatic pressure) at the open boundary of the viscous cement layer, and (b) no ¯ow at the center of
the layer. The expressions are, respectively:

P � 0, r � a; dP=dr � 0, r � 0: �15�
The latter condition follows from u = 0 at r = 0 and eqn (7).

3. Numerical solution

To solve eqn (14) numerically, we ®rst normalize it by introducing the following notations:

Fig. 2. Integration domain in eqn (12).
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f � P

rc20
, x � s

R
, x � r

R
, a � a

R
, g � c0
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, l � x2

2

���������������
iR2or

m

s
, C � 2d

R
:

The resulting equation is:
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1ÿ tanh l

l

�
x2 @

2f

@x2
� g2x

�
1ÿ tanh l

l
� 2 tanh2 l

�
@f

@x
� x2f

� ÿ2rc
2
0
�1ÿ n�
pG

�p
0

dj
�x cos j�

�������������������
a2ÿx 2 sin2j
p

0

f

� �����������������������������������������
x2 � x2 ÿ 2xx cos j

q �
dx� C: �16�

In order to ®nd the desired normal sti�ness between two grains, we relate the force acting on the
grain to displacement d. Then

Sn � 1

d

�a
0

P�r�2pr dr � 4pRrc20
C

�a
0

f�x�x dx: �17�

It is clear now that eqn (16) can be solved with an arbitrarily chosen non-zero C. The resulting
normal sti�ness will not depend on this choice. We solve eqn (16) using the quadrature method (e.g.,
Delves and Mohamed, 1985).

The results of solving eqns (16) and (17) with input parameters G = 45 GPa; n = 0.064; c0 = 1500
m/s; r � 1 g/cm3; R = 10ÿ4 m; h = 10ÿ7 m; n = 9; f � 0:36; and the dynamic viscosity of the cement
0.001 Pa s (pure water); 0.1 Pa s; and 10 Pa s are given (in terms of the real and imaginary parts of the
normal sti�ness Sn) in Fig. 3. The transition zone (from the low-frequency to high-frequency limit) of
the real part of Sn as well as the peak of the imaginary part of Sn move up the frequency axis as the
viscosity of the cement decreases. The frequency of this transition is inversely proportional to the
viscosity of the cement.

Once Sn is available, we can calculate the e�ective bulk and shear moduli of the aggregate using eqn
(1). We stress that eqn (1) has been derived for the case of static deformation of a granular aggregate.

Fig. 3. Real and imaginary parts of the normal sti�ness vs frequency. The dynamic viscosity of cement is given in the plots.
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In the case under consideration the response of the aggregate to the load is clearly time-dependent (Fig.
3). Moreover, the imaginary part of this response is comparable in magnitude to the real part. This fact
calls for a special non-static analysis of the case. In this work, we assume that eqn (1) is applicable to
the case under examination.

4. Implications of solution

We use eqn (1) to ®nd the e�ective bulk and shear moduli of the cemented aggregate, and then
equations

Vp �
���������������������������������������
Re�KEff � 4GEff=3�

rEff

s
, Vs �

������������������
Re�GEff �
rEff

s
, �18�

where rEff is the bulk density of the aggregate, to calculate compressional- and shear-wave velocities Vp

and Vs. The grain density in these calculations was 2.65 g/cm3 (quartz).
Eqn (18) gives wave velocities for the dry cemented frame of unconsolidated sediment. In order to

calculate these velocities in the water-saturated sediment, we use Gassmann's (1951) equation whose
applicability to the case under examination (see discussion at the end of the previous section) will be
investigated later. The result for cement viscosity 10 Pa s and the saturating ¯uid being pure water are
given in Fig. 4. The blow-ups for compressional-wave velocity are given in Fig. 5.

5. Approximate solution: Maxwell body

By carrying out the exact numerical solution for the normal sti�ness in a wide range of input
parameters, we ®nd the following best-®t algebraic expressions:

Fig. 4. Compressional- and shear-wave velocity vs frequency for dry frame and saturated sediment.
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Re�Sn�
2pRrc20

� S1
o2t2

1� o2t2
;

Im�Sn�
2pRrc20

� S1
ot

1� o2t2
; �19�

where

S1 � ~Aa2 � ~Ba� ~C ;

~A � 19:75 � exp� ÿ 51:9L�, ~B � 0:8 � Lÿ0:37,

~C � ÿ0:004 � Lÿ0:58; L � rc20�1ÿ v�=�pG�; t � 0:8
���
2
p

m=
ÿ
ra3c20

�
: �20�

Eqn (19) describes a Maxwell body (e.g., Bourbie et al., 1987) with the following constitutive
equation:

dd
dt
� F

Z
� 1

E

dF

dt
, �21�

where F is the contact force and d is the corresponding displacement; and the viscoelastic constants Z
and E are:

E � 2pRrc20S1, Z � 2pRrc20S1t: �22�
This approximate solution is compared to the exact numerical solution in Fig. 6. The high-frequency

and low-frequency end members of the exact and approximate solutions are practically identical,
however, the amplitude of the imaginary part of the approximate solution is about twice that of the
exact solution. The reason is that the Maxwell model uses a single relaxation time which results in a
narrow (in the frequency domain) transition region from the low-frequency behavior to the high-
frequency behavior (Fig. 6, left).

Fig. 5. Compressional-wave velocity vs frequency for dry frame and saturated sediment (blowup).
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6. Approximate solution: Cole±Cole model

A much better (than the Maxwell body) approximation to our exact numerical solution is given by
the Cole±Cole (1941) model:

Re�Sn�
2pRrc20

� S1

 
1ÿ 1� �����������

ot=2
p

1� ���������
2ot
p � ot

!
;

Im�Sn�
2pRrc20

� S1

�����������
ot=2
p

1� ���������
2ot
p � ot

: �23�

The results of this approximation are compared with the exact solution in Fig. 7. It can be reliably used
instead of the rigorous solution.

Fig. 6. Real and imaginary parts of the normal sti�ness vs frequency, exact and approximate Maxwell solutions. The dynamic vis-

cosity of cement is 104 Pa s.

Fig. 7. Real and imaginary parts of the normal sti�ness vs frequency, exact (thin dark curve) and approximate Cole±Cole (bold

gray curve) solutions. The dynamic viscosity of cement is 10 Pa s.
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7. Experimental veri®cation of results

We apply our theoretical model to reproduce ultrasonic (1 MHz) experimental P-wave velocity
measurements conducted on a dense random pack of identical glass beads partially saturated with liquid
epoxy. Liquid epoxy is the state of epoxy prior to hardening. We assume here that liquid epoxy is a
Newtonian ¯uid. The measurements have been conducted at ®nite con®ning pressure values since it was
impossible (due to coupling problems) to propagate a pulse through the system at zero con®ning
pressure. Our theoretical model, on the other hand, assumes that the grains are not precompacted.

To apply our model to the system used in the experiments, we modify it by assuming that an elastic
spring is placed in parallel to the original viscoelastic model. This spring represents the ®nite sti�ness of
the system without epoxy present. As a result, we can determine the sti�ness of the spring using velocity
measurements at zero epoxy saturation. Then, in order to convert the experimental measurement results
at a con®ning pressure to those without con®nement, we have to subtract the elastic modulus of the dry
system from that at a ®nite epoxy saturation.

We have available velocity measurements at 5, 10, 15, and 20 MPa con®ning pressure in a dry glass
bead pack and in the pack with 25% epoxy saturation (Yin, 1993). In order to reproduce the
experiment, we assume that the shear modulus, Poisson's ratio, and density of glass are 26.2 GPa, 0.277,
and 2.48 g/cm3, respectively (Dvorkin et al., 1994).

We did not have direct data for the viscosity, density, and the acoustic velocity in pure epoxy. We
selected reasonable values of 0.5 Pa s, 1 g/cm3, and 1500 m/s, respectively (Yin, 1993). These values
allow us to consistently match the experimental data at all con®ning pressures (Fig. 8), which con®rms
the validity of our theoretical model as well as our choice of epoxy's physical properties.

In these calculations, we assumed that the epoxy evenly envelopes every grain. Therefore, the
normalized contact radius a can be related to epoxy saturation sE as (Dvorkin and Nur, 1996)

a �
������������������������
sE

2f
3�1ÿ f�:

s
�24�

8. Relating elastic moduli to porosity

The above results are appropriate for modeling the elastic response of an unconsolidated sediment at
about 36% porosity, which is the porosity of a random pack of identical spheres. In order to extend this
result for the entire porosity range, we use a model of Dvorkin and Prasad (1998) where the Hashin±
Shtrikman bounds are used to calculate the dry-frame elastic moduli from those at the critical porosity.
This model is based on the critical porosity concept of Nur et al. (1998). For the case under
examination, critical porosity is the porosity of a dense random pack of identical spheres. Mukerji et al.
(1995) show how to use this concept to modify e�ective medium theories for describing natural
sediments. For porosity f below critical porosity fc, we have

KDry�f� �
24 f=fc

KEff � 4

3
GEff

� 1ÿ f=fc

K� 4

3
GEff

35ÿ1ÿ43GEff ,

GDry�f� �
�

f=fc

GEff � Z
� 1ÿ f=fc

G� Z

�ÿ1
ÿZ, Z � GEff

6

�
9KEff � 8GEff

KEff � 2GEff

�
; f< fc, �25�

K.C. Leurer, J. Dvorkin / International Journal of Solids and Structures 37 (2000) 1133±1144 1141



where KEff and GEff come from eqn (1) using our sphere pack model; and K and G are the bulk and
shear moduli of the grain material, respectively. For porosity above critical porosity we have

KDry �
24 �1ÿ f�=�1ÿ fc �

KEff � 4

3
GEff

�
ÿ
fÿ fc

�
=
ÿ
1ÿ fc

�
4

3
GEff

35ÿ1ÿ43GEff ,

GDry �
"
�1ÿ f�=ÿ1ÿ fc

�
GEff � Z

�
ÿ
fÿ fc

�
=
ÿ
1ÿ fc

�
Z

#ÿ1
ÿZ, f > fc: �26�

The dry-frame moduli are plotted vs porosity in Fig. 9 where the parameters used are the same as for
plots in Fig. 4, and frequency is in®nite (elastic limit).

Fig. 8. Compressional-wave modulus (M-modulus) di�erence (saturated minus dry) of a glass-bead pack vs epoxy saturation.

Triangles are the data, ®lled circles are from our model.
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9. Conclusion

The theoretical model o�ered here is a ®rst step towards rigorously describing the visco-elastic
behavior of a particulate system with viscous cement at grain contacts. Such systems may be
encountered in nature (marine sediments with clay and/or biogenic viscous matter enveloping the grains;
heavy oil sands; shallow sands with viscous contaminant) and in engineering applications (asphalt
concrete). The model developed here is, strictly speaking, appropriate only for suspensions with zero
e�ective pressure. The next step is to extend this model for the case where the contacting grains are
subject to a ®nite con®ning force and thus have a direct contact (Hertzian) area rather than a point
contact. Such theoretical development will be accompanied by pulse-transmission experiments to
measure elastic-wave velocities in relevant granular systems.

Another goal is to ®nd an appropriate physical representation for the Cole±Cole (1941) model
employed here that can be easily used in a numerical discrete element code.

In calculating the elastic moduli of the fully saturated system, we used Gassmann's (1951) equation
where the dry-frame moduli are given by our model for a pack with viscous cement. We did so for
simplicity. However, it is straightforward to use the Biot model instead which may help account for the
global frequency dispersion in the system.
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